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Lecture 14: Probability over uncountably-infinite
spaces, Gaussian RVs, Johnson-Lindenstrauss Lemma



Recap

* Chernoff-Hoeffding bounds

* Use in randomized algorithm for routing to minimize congestion.

* Randomized complexity classes RP and BPP, connections to P/poly.



Probability over uncountably-infinite spaces

* |In finite or countable probability spaces, we could think of the probability distribution
v as a function from () to [0,1], assigning a probability to each element of ().

* In uncountably-infinite spaces, like . = R, this is problematic:

» At most n points x can have v(x) > 1/n.

» Only countably many points x can have v(x) > 0. (Any such x must have v(x) =
1/n for some integer n).

To resolve, will only talk about probabilities of events from an allowed set of
events known as a o-algebra or o-field.



Probability over uncountably-infinite spaces

Definition 1.1 Let 2 denote the set of all subsets of Q. A set F C 2% is called a o-field (or

c-algebra) if
1. © e F.
It is also closed under countable
2. A€ F = A° € F (where A= Q\ A). intersections (by De Morgan’s laws)

3. For a (countable) sequence Ay, Ay, . .. such that each A; € F, we have \U;A; € F.

The sets in ‘J are the allowed events that may have probabilities (the measurable sets).

Definition 1.2 Given a o-field F C 29, a function v : F — [0,1] is known as a probability
measure if

1. v(®) =0. Not necessarily for uncountably-infinite}
unions
2. V(E°) =1—v(E) forall E € F.

3. For a (countable) sequence of disjoint sets E1, E, . .. such that all E; € F, we have

v (UiE;) = Zu



Probability over uncountably-infinite spaces

Definition 1.1 Let 2 denote the set of all subsets of Q. A set F C 2% is called a o-field (or
c-algebra) if

1. e F.
2. Ae F = A € F (where A° = O\ A).

3. For a (countable) sequence Ay, Ay, . .. such that each A; € F, we have \U;A; € F.

The Borel g-algebra is the smallest g-algebra on R that contains all intervals.

A real-valued random variable X is a measurable function over (Q,F, v): a function from Q to R
such that for every Borel set B, the set X 1(B) = {w: X(w) € B} is a measurable set (inf).

Equivalently, for any ¢ € R, {w: X(w) < c} is a measurable set, and so has a well-defined probability.

Often, we will think of a random variable as just a probability distribution on its range.



Random variables

* Given a R\V. X, we define its cumulative distribution function Fyx(z) = P[X < z].

* Can observe that Fy is a non-decreasing function. If it is differentiable, then its

derivative f is the density function of X, and we typically refer to X as a continuous
R.V.

» E[X] = [, X(w)dv = [ xf(x)dx.

* For discrete RVs, we had E[X] =}, X(w)v(w) = Yqa - P(X = a).



Gaussian Random variables

1
V2mo?

A Gaussian Random Variable is an R.V. with density f(x) =
1 and a4 which are its mean and variance respectively.

* Notationally, we write X ~ N(u, o2).

Claim: ffooo\/%_ne‘xz/zdx = 1.

" 2
Proof: (f_ \/i_e_xz/zdx) =§f_oo “12dx [ eV /2dy
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f j e~ (x +3’2)/2dxdy— j j ~*/2rdrdg

=J e~ z/zrdr=—e"’2/2‘ = 1.
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Gaussian Random variables

A couple more useful facts we’ll need:
* For X ~ N(0,1),4 € (0,1/2), E[e?**|=1/V1=21.

* Let Z = ¢, X; + ¢, X, where X;, X, ~ N(0,1) are independent. Then Z ~ N(0, c? + ¢3).

» One way to think of this: consider taking an inner-product between the vector
¢ = (cq4,¢cy) and the vector (X1,X,). Because a d-dimensional Gaussian is
spherically-symmetric, we can instead choose an orthogonal basis where one
basis vector is ¢ = C/”C” and the others are orthogonal (and so can be ignored).

So, we just have a value taken from a single Gaussian, stretched by |c|.



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

Imagine you have n data points in a d-dimensional space, where d is large.

The JL lemma says that no matter how large d is, if you randomly project the data
down to a space of dimension k = O (loegzn)’ then whp you will approximately

preserve the relative distances between points up toa 1 + € factor.

So, if all you care about are approximate distances, then you can wlog assume your
data is in a not-too-high dimensional space.

How to randomly project? Choose k random vectors G4, ..., G from spherical
Gaussian, and project by inner-product: v = ((G, V), ..., (G, V). lLe., v = Gv.



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

8lnn
€2/2—€3/2’

The JL Lemma: Let v, ..., v, € R%. Choose a random matrix G € R**? for k =
with each G;; ~ N(0,1) independently. Consider ¢(v) = Gv/Vk.

With probability at least 1 — 1/n, for all pairs v;, v; we have:

(1=l = v < llo@) — o()II” < 1 + O|vi — y|”

Note that since ¢ is linear, @(v;) — cp(vj) = cp(vi — vj). So, it suffices to prove that
for a single vector w = v; — v;, with probability at least 1 — 1/n3 we have:

(1 =alwll* < llpwll < (1 + e)llwll*.
And then apply a union bound.



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

Claim: Let w € R%. Choose a random matrix G € R¥*4 for k = 62;31:;/ with each

Gij ~ N(0,1) independently. With probability at Ieast 1 — 1/n3 we have:
(1 - Olwll? < [[aw/VE||” < @ + @l

Proof:

* Consider (Gw)y _ Gw _ Z Gijw;. Thisis a Gaussian RV X; ~ N(0,1).

wil— lwll — lwll

2
* S0, ””GVWHZ = Y*  X? where X; are independent. IE[ZiXiZ] = k.

* Just need to show that for Z = Y. X7, whp, (1 —e)k < Z < (1 + €)k.

(In other words, need tail bound for sum of independent squared-Gaussian R.V.s)




Dimensionality Reduction and the Johnson-

Lindenstrauss Lemma

P [Z E (] + E)k] .:_: P _E.&Z :2 E,ﬁl-{1+g}fcj| Other dIFECtIOn IS S|m||ar
E _E.”]"'Z} N |
< e 1-_{1+£)k (by Markov’s inequality)
E _E’)"Ef—l X‘} Hr:_le E [EJ‘L Xf]
= E;A.{1+E}k = A (L) (by the lndependence of Xl; ce, Xk)
| ——
- oA 111'3;% (by Lemma 2.3)
o—2(1+e)2 \ ¥/2
= .1_2/1 (assume A < 1/2)
< (e (1+2)) let A — —_°©
=i (e 2(1+£})
Finally, for k = 2 k/2
8lnn this i < ((1 — &+ E)(l + E}) (by Taylor expansion of e~ ¥)
€2/2—€3/2’ IS 15 .
sufficiently small < E—(%—E_T)% byl tx<ch




Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

Conclusion: if you only care about approximate distances, approximate angles,
etc, then can assume wlog that data lies in a space of dimension no greater than

0(10g n).

€2

Use for: approximate nearest-neighbor, streaming algorithms, ...
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