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Recap
• Chernoff-Hoeffding bounds

• Use in randomized algorithm for routing to minimize congestion.

• Randomized complexity classes RP and BPP, connections to P/poly.



Probability over uncountably-infinite spaces

• In finite or countable probability spaces, we could think of the probability distribution 
𝜈 as a function from Ω to [0,1], assigning a probability to each element of  Ω.

• In uncountably-infinite spaces, like Ω = ℝ, this is problematic:

➢ At most 𝑛 points 𝑥 can have 𝜈 𝑥 ≥ 1/𝑛.

➢ Only countably many points 𝑥 can have 𝜈 𝑥 > 0.  (Any such 𝑥 must have 𝜈 𝑥 ≥
1/𝑛 for some integer 𝑛).

To resolve, will only talk about probabilities of events from an allowed set of 
events known as a 𝜎-algebra or 𝜎-field.



Probability over uncountably-infinite spaces

The sets in F are the allowed events that may have probabilities (the measurable sets). 

Not necessarily for uncountably-infinite 
unions

It is also closed under countable 
intersections (by De Morgan’s laws)



Probability over uncountably-infinite spaces

The Borel 𝜎-algebra is the smallest 𝜎-algebra on ℝ that contains all intervals.

A real-valued random variable 𝑋 is a measurable function over (Ω,F, 𝜈): a function from Ω to ℝ 
such that for every Borel set 𝐵, the set 𝑋−1 𝐵 = {𝜔: 𝑋 𝜔 ∈ 𝐵} is a measurable set (inF).

Equivalently, for any 𝑐 ∈ ℝ, {𝜔: 𝑋 𝜔 ≤ 𝑐} is a measurable set, and so has a well-defined probability.

Often, we will think of a random variable as just a probability distribution on its range.



Random variables

• Given a R.V. 𝑋, we define its cumulative distribution function 𝐹𝑋 𝑧 = ℙ[𝑋 ≤ 𝑧].

• Can observe that 𝐹𝑋 is a non-decreasing function.   If it is differentiable, then its 
derivative 𝑓 is the density function of 𝑋, and we typically refer to 𝑋 as a continuous 
R.V.

• 𝔼 𝑋 = Ω𝑋׬ 𝜔 𝑑𝜈 = ∞−׬
∞
𝑥𝑓 𝑥 𝑑𝑥.

• For discrete RVs, we had 𝔼 𝑋 = σ𝜔𝑋 𝜔 𝜈 𝜔 = σ𝑎 𝑎 ⋅ ℙ(𝑋 = 𝑎).



Gaussian Random variables

• A Gaussian Random Variable is an R.V. with density 𝑓 𝑥 =
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• Notationally, we write 𝑋 ∼ 𝑁(𝜇, 𝜎2).
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Gaussian Random variables
A couple more useful facts we’ll need:

• For 𝑋 ∼ 𝑁 0,1 , 𝜆 ∈ 0,1/2 ,   𝔼 𝑒𝜆𝑋
2
= 1/ 1 − 2𝜆. 

• Let 𝑍 = 𝑐1𝑋1 + 𝑐2𝑋2 where 𝑋1, 𝑋2 ∼ 𝑁 0,1  are independent.  Then 𝑍 ∼ 𝑁(0, 𝑐1
2 + 𝑐2

2). 

➢ One way to think of this: consider taking an inner-product between the vector 
𝑐 = 𝑐1, 𝑐2  and the vector (𝑋1, 𝑋2).  Because a d-dimensional Gaussian is 
spherically-symmetric, we can instead choose an orthogonal basis where one 
basis vector is Ƹ𝑐 = Τ𝑐 𝑐  and the others are orthogonal (and so can be ignored).  
So, we just have a value taken from a single Gaussian, stretched by |𝑐|.



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

Imagine you have 𝑛 data points in a 𝑑-dimensional space, where 𝑑 is large. 

The JL lemma says that no matter how large 𝑑 is, if you randomly project the data 

down to a space of dimension 𝑘 = 𝑂
log 𝑛

𝜖2
, then whp you will approximately 

preserve the relative distances between points up to a 1 ± 𝜖 factor.

So, if all you care about are approximate distances, then you can wlog assume your 
data is in a not-too-high dimensional space.

How to randomly project?  Choose 𝑘 random vectors 𝐺1, … , 𝐺𝑘 from spherical 
Gaussian, and project by inner-product: 𝑣 → ( 𝐺1, 𝑣 , … , 𝐺𝑘 , 𝑣 ).  I.e., 𝑣 → 𝐺𝑣. 



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

The JL Lemma: Let 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑑.   Choose a random matrix 𝐺 ∈ ℝ𝑘×𝑑  for 𝑘 =
8 ln 𝑛

𝜖2/2−𝜖3/2
,  

with each 𝐺𝑖𝑗 ∼ 𝑁(0,1) independently.   Consider 𝜑 𝑣 = 𝐺𝑣/ 𝑘. 

With probability at least 1 − 1/𝑛, for all pairs 𝑣𝑖 , 𝑣𝑗 we have:

1 − 𝜖 𝑣𝑖 − 𝑣𝑗
2
≤ 𝜑 𝑣𝑖 − 𝜑 𝑣𝑗

2
≤ 1 + 𝜖 𝑣𝑖 − 𝑣𝑗

2
.

Note that since 𝜑 is linear, 𝜑 𝑣𝑖 − 𝜑 𝑣𝑗 = 𝜑 𝑣𝑖 − 𝑣𝑗 .  So, it suffices to prove that 
for a single vector 𝑤 = 𝑣𝑖 − 𝑣𝑗, with probability at least 1 − 1/𝑛3 we have:

1 − 𝜖 𝑤 2 ≤ 𝜑 𝑤 ≤ 1 + 𝜖 𝑤 2.

And then apply a union bound.



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

Claim: Let 𝑤 ∈ ℝ𝑑.   Choose a random matrix 𝐺 ∈ ℝ𝑘×𝑑  for 𝑘 =
8 ln 𝑛

𝜖2/2−𝜖3/2
,  with each 

𝐺𝑖𝑗 ∼ 𝑁(0,1) independently.  With probability at least 1 − 1/𝑛3 we have:

1 − 𝜖 𝑤 2 ≤ 𝐺𝑤/ 𝑘
2
≤ 1 + 𝜖 𝑤 2.

Proof:

• Consider 
𝐺𝑤 𝑖

‖𝑤‖
=

𝐺𝑖𝑤

‖𝑤‖
=

1

‖𝑤‖
σ𝑗𝐺𝑖𝑗𝑤𝑗.  This is a Gaussian RV 𝑋𝑖 ∼ 𝑁(0,1).

• So,  
𝐺𝑤 2

𝑤 2 = σ𝑖=1
𝑘 𝑋𝑖

2 where 𝑋𝑖  are independent.  𝔼 σ𝑖𝑋𝑖
2 = 𝑘.  

• Just need to show that for 𝑍 = σ𝑖𝑋𝑖
2, whp, 1 − 𝜖 𝑘 ≤ 𝑍 ≤ 1 + 𝜖 𝑘.

(In other words, need tail bound for sum of independent squared-Gaussian R.V.s)



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

Other direction is similar

Finally, for 𝑘 =
8 ln 𝑛

𝜖2/2−𝜖3/2
, this is 

sufficiently small



Dimensionality Reduction and the Johnson-
Lindenstrauss Lemma

Conclusion: if you only care about approximate distances, approximate angles, 
etc, then can assume wlog that data lies in a space of dimension no greater than 

𝑂(
log 𝑛

𝜖2
).  

Use for: approximate nearest-neighbor, streaming algorithms, …
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